Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix

نویسندگان

  • Anil K. Pandey
  • Krista M. Thomas
  • Christina R. Forbes
  • Neal J. Zondlo
چکیده

Aromatic rings exhibit defined interactions via the unique aromatic π face. Aromatic amino acids interact favorably with proline residues via both the hydrophobic effect and aromatic-proline interactions, C-H/π interactions between the aromatic π face and proline ring C-H bonds. The canonical aromatic amino acids Trp, Tyr, and Phe strongly disfavor a polyproline helix (PPII) when they are present in proline-rich sequences because of the large populations of cis amide bonds induced by favorable aromatic-proline interactions (aromatic-cis-proline and proline-cis-proline-aromatic interactions). We demonstrate the ability to tune polyproline helix conformation and cis-trans isomerism in proline-rich sequences using aromatic electronic effects. Electron-rich aromatic residues strongly disfavor polyproline helix and exhibit large populations of cis amide bonds, while electron-poor aromatic residues exhibit small populations of cis amide bonds and favor polyproline helix. 4-Aminophenylalanine is a pH-dependent electronic switch of polyproline helix, with cis amide bonds favored as the electron-donating amine, but trans amide bonds and polyproline helix preferred as the electron-withdrawing ammonium. Peptides with block proline-aromatic PPXPPXPPXPP sequences exhibited electronically switchable pH-dependent structures. Electron-poor aromatic amino acids provide special capabilities to integrate aromatic residues into polyproline helices and to serve as the basis of aromatic electronic switches to change structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PolyprOnline: polyproline helix II and secondary structure assignment database

The polyproline helix type II (PPII) is a regular protein secondary structure with remarkable features. Many studies have highlighted different crucial biological roles supported by this local conformation, e.g. in the interactions between biological macromolecules. Although PPII is less frequently present than regular secondary structures such as canonical alpha helices and beta strands, it co...

متن کامل

Stereoelectronic effects on polyproline conformation.

The polyproline type II (PPII) helix is a prevalent conformation in both folded and unfolded proteins, and is known to play important roles in a wide variety of biological processes. Polyproline itself can also form a type I (PPI) helix, which has a disparate conformation. Here, we use derivatives of polyproline, (Pro)10, (Hyp)10, (Flp)10, and (flp)10, where Hyp is (2S,4R)-4-hydroxyproline, Flp...

متن کامل

UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations.

UV resonance Raman (UVRR) excitation profiles and Raman depolarization ratios were measured for a 21-residue predominantly alanine peptide, AAAAA(AAARA) 3A (AP), excited between 194 and 218 nm. Excitation within the pi-->pi* electronic transitions of the amide group results in UVRR spectra dominated by amide vibrations. The Raman cross sections and excitation profiles provide information about ...

متن کامل

Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry.

Polyproline exists predominately as the all-cis polyproline I (PPI) helix in aliphatic alcohols, whereas the all-trans polyproline II (PPII) helix is favored in aqueous solutions. Previous ion mobility spectrometry-mass spectrometry (IMS-MS) work demonstrates that the gas-phase conformations of polyproline ions can be related to the corresponding PPI and PPII helices in solution [J. Phys. Chem....

متن کامل

The calculated circular dichroism of polyproline II in the polarizability approximation.

The circular dichroism (CD) spectrum of polyproline I1 (PPII) has heretofore been moderately well calculated from exciton theory only at the expense of assuming unreasonable chain conformations and accepting a conservative spectrum in the 180250-nm region (which is not observed). We have incorporated far uv transitions in the polarisability approximation and, together with the r2r* transition, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014